Chapter 1. Some Basic Concepts of Chemistry

- 1. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY₂ weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are
 - (a) 40, 30

(b) 60,40

(c) 20, 30

(d) 30, 20

(NEET-II 2016)

2. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution? (Ag = 107.8, N = 14, O = 16, Na = 23,C1 = 35.5)

(a) 3.5 g(b) 7 g

- (c) 14 g (d) 28 g
- 3. If Avogadro number N_A , is changed from $6.022 \times 10^{23} \text{ mol}^{-1} \text{ to } 6.022 \times 10^{20} \text{ mol}^{-1}, \text{ this}$ would change
 - (a) the mass of one mole of carbon
 - (b) the ratio of chemical species to each other in a balanced equation
 - (c) the ratio of elements to each other in a compound
 - (d) the definition of mass in units of grams.
- 4. The number of water molecules is maximum in
 - (a) 1.8 gram of water
 - (b) 18 gram of water
 - 18 moles of water
 - (d) 18 molecules of water.

(2015)

5. A mixture of gases contains H_2 and O_2 gases in the ratio of 1: 4 (w/w). What is the molar ratio of the two gases in the mixture?

(a) 16:1 (b) 2:1

(c) 1:4 (d) 4:1

(2015, Cancelled)

6. Equal masses of H₂, O₂ and methane have been taken in a container of volume V at temperature 27 °C in identical conditions. The ratio of the volumes of gases $H_2: O_2:$ methane would be

(a) 8:16:1

(b) 16:8:1

(c) 16:1:2

(d) 8:1:2 (2014)

When 22.4 litres of $H_{2(g)}$ is mixed with 11.2 litres of $Cl_{2(g)}$, each at S.T.P, the moles of $HCl_{(g)}$ formed is equal to

(a) 1 mol of $HCl_{(\sigma)}$

(b) 2 mol of $HCl_{(g)}$

(c) $0.5 \text{ mol of HCl}_{(g)}$

(d) $1.5 \operatorname{mol} \operatorname{of} \operatorname{HCl}_{(g)}$. (2014)

8. 1.0 g of magnesium is burnt with 0.56 g O₂ in a closed vessel. Which reactant is left in excess and how much? (At. wt. Mg = 24, O = 16)

(a) Mg, 0.16 g

(b) O_2 , 0.16 g

(c) Mg, 0.44 g

(d) O_2 , 0.28 g

9. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is

(a) 0.001 M

(b) 0.1 M

(c) $0.02 \,\mathrm{M}$

(d) 0.01 M

(NEET 2013)

10. In an experiment it showed that 10 mL of 0.05 M solution of chloride required 10 mL of 0.1 M solution of AgNO₃, which of the following will be the formula of the chloride (X stands for the symbol of the element other than chlorine)

(a) X_2Cl_2

(b) XCl_2 (c) XCl_4 (d) X_2Cl

(Karnataka NEET 2013)

11. Which has the maximum number of molecules among the following?

(a) 44 g CO₂

(b) 48 g O_3

(c) 8 g H₂

(d) 64 g SO₂

(Mains 2011)

12. The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$

(a) 6.026×10^{22}

(b) 1.806×10^{23}

(c) 3.600×10^{23}

(d) 1.800×10^{22}

(2010)

- 13. 25.3 g of sodium carbonate, Na₂CO₃ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na^{+} and carbonate ions, CO_3^{2-} are respectively (Molar mass of $Na_2CO_3 = 106 \text{ g mol}^{-1}$)
 - (a) 0.955 M and 1.910 M
 - (b) 1.910 M and 0.955 M
 - (c) 1.90 M and 1.910 M
 - (d) 0.477 M and 0.477 M
- 14. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
 - (a) 3 mol
- (b) 4 mol
- (c) 1 mol
- (d) 2 mol (2009)

(2010)

- 15. What volume of oxygen gas (O2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C₃H₈) measured under the same conditions?
 - (a) 5 L
- (b) 10 L
- (c) 7 L (d) 6 L (2008)
- 16. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g HCl?
 - (a) 0.011
- (b) 0.029
 - (c) 0.044 (d) 0.333

(2008)

- 17. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be
 - (a) CHO
- (b) CH₄O
- (c) CH₃O
- (d) CH₂O (2008)
- **18.** An element, X has the following isotopic composition:
 - $^{200}X:90\%$
- $^{199}X: 8.0\%$
- $^{202}X: 2.0\%$

The weighted average atomic mass of the naturally occurring element X is closest to

- (a) 201 amu
- (b) 202 amu
- (c) 199 amu
- (d) 200 amu (2007)
- 19. The maximum number of molecules is present in
 - (a) 15 L of H₂ gas at STP
 - (b) 5 L of N₂ gas at STP
 - (c) 0.5 g of H₂ gas
 - (d) $10 \text{ g of } O_2 \text{ gas.}$

(2004)

- 20. Which has maximum molecules?
 - (a) $7 g N_2$
- (b) $2 g H_2$
- (c) 16 g NO_2
- (d) 16 g O₂ (2002)

- 21. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at. wt. = 78.4) then minimum molecular weight of peroxidase anhydrous enzyme is
 - (a) 1.568×10^4
- (b) 1.568×10^3
- (c) 15.68
- (d) 2.136×10^4

(2001)

- 22. Molarity of liquid HCl, if density of solution is 1.17 g/cc is
 - (a) 36.5
- (b) 18.25
- (c) 32.05
- (d) 42.10 (2001)
- 23. Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/g whose radius and length are 7 Å and 10 Å respectively. If $N_A = 6.02 \times 10^{23}$, find molecular weight of virus.
 - (a) 15.4 kg/mol
- (b) $1.54 \times 10^4 \text{ kg/mol}$
- (c) $3.08 \times 10^4 \text{ kg/mol}$
- (d) $3.08 \times 10^3 \text{ kg/mol}$
- 24. In quantitative analysis of second group in laboratory, H₂S gas is passed in acidic medium for precipitation. When Cu2+ and Cd2+ react with KCN, then for product, true statement is
 - (a) $K_2[Cu(CN)_4]$ more soluble
 - (b) $K_2[Cd(CN)_4]$ less stable
 - (c) $K_3[Cu(CN)_2]$ less stable
 - (d) $K_2[Cd(CN)_3]$ more stable.
- 25. Volume of CO₂ obtained by the complete decomposition of 9.85 g of BaCO₃ is
 - (a) 2.24 L
- (b) 1.12 L
- (c) 0.84 L
- (d) 0.56 L (2000)
- **26.** Oxidation numbers of A, B, C are +2, +5 and -2 respectively. Possible formula of compound is
 - (a) $A_2(BC_2)_2$
- (b) $A_3(BC_4)_2$
- (c) $A_2(BC_3)_2$
- (d) $A_3(B_2C)_2$

(2000)

(2000)

- 27. The number of atoms in 4.25 g of NH₃ is approximately
 - (a) 4×10^{23}
- (b) 2×20^{23}
- (c) 1×10^{23}
- (d) 6×10^{23} (1999)
- 28. Given the numbers: 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is
 - (a) 3, 3 and 4 respectively
 - (b) 3, 4 and 4 respectively
 - (c) 3, 4 and 5 respectively
 - (d) 3, 3 and 3 respectively. (1998)

- 29. Haemoglobin contains 0.334% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of haemoglobin is
 - (a) 4
- (b) 6
- (c) 3
- (d) 2 (1998)
- **30.** In the reaction,

 $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ when 1 mole of ammonia and 1 mole of O₂ are made to react to completion:

- (a) All the oxygen will be consumed.
- (b) 1.0 mole of NO will be produced.
- (c) 1.0 mole of H₂O is produced.
- (d) All the ammonia will be consumed.

(1998)

- 31. Among the following which one is not paramagnetic? [Atomic numbers; Be = 4, Ne = 10, As = 33, Cl = 17
 - (a) Ne^{2+} (b) Be^{+}
- - (c) Cl⁻
 - (d) As^+ (1998)
- 32. 0.24 g of a volatile gas, upon vaporisation, gives 45 mL vapour at NTP. What will be the vapour density of the substance? (Density of $H_2 = 0.089$)
 - (a) 95.93
- (b) 59.93 (c) 95.39 (d) 5.993
 - (1996)
- 33. The amount of zinc required to produce 224 mL of H₂ at STP on treatment with dilute H₂SO₄ will be
 - (a) 65 g
- (b) 0.065 g (c) 0.65 g (d) 6.5 g

- 34. The dimensions of pressure are the same as that of
 - (a) force per unit volume
 - (b) energy per unit volume
 - (c) force
 - (d) energy.

(1995)

- 35. The number of moles of oxygen in one litre of air containing 21% oxygen by volume, under standard conditions, is
 - (a) 0.0093 mol
- (b) 2.10 mol
- (c) 0.186 mol
- (d) 0.21 mol.

(1995)

- **36.** The total number of valence electrons in 4.2 g of N_3^- ion is (N_A is the Avogadro's number)
 - (a) $2.1 N_A$
- (b) $4.2 N_A$
- (c) $1.6 N_A$
- (d) $3.2 N_A$ (1994)

- 37. A 5 molar solution of H₂SO₄ is diluted from 1 litre to a volume of 10 litres, the normality of the solution will be
 - (a) 1 N
- (b) 0.1 N
- (c) 5 N
- (d) 0.5 N (1991)
- 38. The number of gram molecules of oxygen in 6.02×10^{24} CO molecules is
 - (a) 10 g molecules
- (b) 5 g molecules
- (c) 1 g molecules
- (d) 0.5 g molecules.

(1990)

- 39. Boron has two stable isotopes, ¹⁰B(19%) and ¹¹B(81%). Calculate average at. wt. of boron in the periodic table
 - (a) 10.8
- (b) 10.2
- 11.2 (c)
- (d) 10.0 (1990)
- **40.** The molecular weight of O_2 and SO_2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, one litre of O₂ contains 'N' molecules. The number of molecules in two litres of SO₂ under the same conditions of temperature and pressure will be
 - (a) N/2
- (b) N
- (c) 2 N
- (d) 4 N (1990)
- **41.** A metal oxide has the formula Z_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic weight of the metal is
 - (a) 27.9
- (b) 159.6
- (c) 79.8
- (d) 55.8 (1989)
- **42.** Ratio of C_p and C_V of a gas 'X' is 1.4. The number of atoms of the gas 'X' present in 11.2 litres of it at NTP will be
 - (a) 6.02×10^{23}
- (b) 1.2×10^{23}
- (c) 3.01×10^{23}
- (d) 2.01×10^{23}

- 43. What is the weight of oxygen required for the complete combustion of 2.8 kg of ethylene?
 - (a) 2.8 kg (b) 6.4 kg (c) 9.6 kg (d) 96 kg (1989)
- **44.** The number of oxygen atoms in 4.4 g of CO₂
 - (a) 1.2×10^{23}
- (b) 6×10^{22}
- (c) 6×10^{23}
- (d) 12×10^{23}

(1989)

- 45. At S.T.P. the density of CCl_4 vapour in g/L | 47. 1 cc N_2O at NTP contains will be nearest to
 - (a) 6.87
- (b) 3.42
- (c) 10.26 (d) 4.57

- **46.** One litre hard water contains 12.00 mg Mg²⁺. Milli-equivalents of washing soda required to remove its hardness is
 - (a) 1
- (b) 12.16
- $(c) \quad 1\times 10^{-3}$
- (d) 12.16×10^{-3}

(1988)

- - (a) $\frac{1.8}{224} \times 10^{22}$ atoms
 - (b) $\frac{6.02}{22400} \times 10^{23}$ molecules
 - (c) $\frac{1.32}{224} \times 10^{23}$ electrons
 - (d) All the above.

(1988)

Answer Key

- (a) (b) **3.** (a) **4.** (c) **5.** (d) **6.** (c) 7. (a) 8. (a) 9. (d) 10. (b)
- 11. (c) 12. (b) 13. (b) 14. (b) 15. (a) 16. (b) 17. (c) 18. (d) 19. (a)
- 22. **25.** (b) **26.** (b) **27.** (d) 28. (c) (a) 24. (c) (d) **29.**
- **31.** (c) **32.** (b) 33. (c) **34.** (b) **35.** (a) **36.** (c) 37. (a) **38.** (b) **39.** (a) **40.** (c)
- **41.** (d) **42.** (a) 43. (c) 44. (a) **45.** (a) 46. (a) 47. (d)

EXPLANATIONS

1. (a): Let atomic weight of element X is x and that of element Y is y.

For
$$XY_2$$
, $n = \frac{w}{\text{Mol. wt.}}$

$$0.1 = \frac{10}{x + 2y} \implies x + 2y = \frac{10}{0.1} = 100 \qquad ...(i)$$

For
$$X_3Y_2$$
, $n = \frac{w}{\text{Mol. wt.}}$

$$0.05 = \frac{9}{3x + 2y} \implies 3x + 2y = \frac{9}{0.05} = 180$$
 ...(ii

On solving equations (i) and (ii), we get y = 30 $x + 2(30) = 100 \Rightarrow x = 100 - 60 = 40$

2. (b): 16.9% solution of AgNO₃ means 16.9 g of AgNO₃ in 100 mL of solution.

16.9 g of AgNO₃ in 100 mL solution \equiv 8.45 g of AgNO₃ in 50 mL solution.

Similarly, 5.8% of NaCl in 100 mL solution \equiv 2.9 g of NaCl in 50 mL solution.

The reaction can be represented as:

AgNO₃ + NaCl
$$\longrightarrow$$
 AgCl + NaNO₃

Initial 8.45/170 2.9/58.5 0 0

mole = 0.049 = 0.049

= 0.049 = 0.049es 0 0 Final moles 0 0.049 0.049

- ∴ Mass of AgCl precipitated = 0.049 × 143.3 $= 7.02 \approx 7 \text{ g}$
- 3. (a): Mass of 1 mol $(6.022 \times 10^{23} \text{ atoms})$ of carbon

If Avogadro number is changed to 6.022×10^{20} atoms then mass of 1 mol of carbon

$$= \frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} \,\mathrm{g}$$

4. (c): 1.8 gram of water = $\frac{6.023 \times 10^{23}}{18} \times 1.8$ $= 6.023 \times 10^{22}$ molecules

18 gram of water = 6.023×10^{23} molecules 18 moles of water = $18 \times 6.023 \times 10^{23}$ molecules

5. (d): Number of moles of $H_2 = \frac{1}{2}$

Number of moles of $O_2 = \frac{4}{32}$

Hence, molar ratio = $\frac{1}{2} : \frac{4}{32} = 4 : 1$

6. (c): According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of their no. of moles.

So, no. of moles =
$$\frac{\text{Mass}}{\text{Mol. mass}}$$

$$n_{\text{H}_2} = \frac{w}{2}$$
; $n_{\text{O}_2} = \frac{w}{32}$; $n_{\text{CH}_4} = \frac{w}{16}$

...(i) So, the ratio is $\frac{w}{2} : \frac{w}{32} : \frac{w}{16}$ or 16:1:2.

7. (a): 1 mole = 22.4 litres at S.T.P.

$$n_{\text{H}_2} = \frac{22.4}{22.4} = 1 \text{ mol} ; \ n_{\text{Cl}_2} = \frac{11.2}{22.4} = 0.5 \text{ mol}$$

Here, Cl₂ is limiting reagent. So, 1 mole of $HCl_{(q)}$ is

8. (a): $n_{\text{Mg}} = \frac{1}{24} = 0.0416$ moles

$$n_{\rm O_2} = \frac{0.56}{32} = 0.0175$$
 moles

The balanced equation is

$$Mg + \frac{1}{2}O_2 \longrightarrow MgO$$

0.0175 moles 0.0416 moles Initial

 $(0.0416 - 2 \times 0.0175)$ Final = 0.0066 moles (O_2 is limiting reagent.)

 \therefore Mass of Mg left in excess = $0.0066 \times 24 = 0.16$ g

9. **(d)**: Moles of urea =
$$\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 0.001$$

Concentration of solution = $\frac{0.001}{100} \times 1000 = 0.01 \text{ M}$

10. (b): Millimoles of solution of chloride $=0.05 \times 10 = 0.5$

Millimoles of AgNO₃ solution = $10 \times 0.1 = 1$ So, the millimoles of AgNO₃ are double than the chloride solution.

- $\therefore XCl_2 + 2AgNO_3 \rightarrow 2AgCl + X(NO_3)_2$
- 11. (c): 8 g H₂ has 4 moles while the others has 1 mole each.
- **12. (b) :** No. of atoms = $N_A \times$ No. of moles \times 3 = $6.023 \times 10^{23} \times 0.1 \times 3 = 1.806 \times 10^{23}$
- 13. (b): Given that molar mass of Na₂CO₃ = 106 g $\therefore \text{ Molarity of solution} = \frac{25.3 \times 1000}{106 \times 250}$ = 0.9547 M = 0.955 M

 $Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$

$$[Na^{+}] = 2[Na_{2}CO_{3}] = 2 \times 0.955 = 1.910 \text{ M}$$

 $[CO_{3}^{2-}] = [Na_{2}CO_{3}] = 0.955 \text{ M}$

14. (b) :
$$H_2 + 1/2O_2 \rightarrow H_2O$$
2 g 16 g 18 g
1 mol 0.5 1 mol

10 g of $H_2 = 5$ mol and 64 g of $O_2 = 2$ mol

... In this reaction, oxygen is the limiting reagent so amount of H₂O produced depends on that of O₂. Since 0.5 mol of O_2 gives 1 mol H_2O

 \therefore 2 mol of O₂ will give 4 mol H₂O

15. (a):
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$
 (balanced 1 vol. 5 vol. 3 vol. 4 vol. equation)

According to the above equation

1 vol. or 1 litre of propane requires to 5 vol. or 5 litre of O_2 to burn completely.

16. (b): PbO + 2HCl
$$\rightarrow$$
 PbCl₂ + H₂O
 $n \text{ mol}$ $2n \text{ mol}$ $n \text{ mol}$ $n \text{ mol}$
 $\frac{6.5}{224} \text{ mol}$ $\frac{3.2}{36.5} \text{ mol}$
 0.029 mol 0.087 mol

Formation of moles of lead (II) chloride depends upon the no. of moles of PbO which acts as a limiting factor here. So, no. of moles of PbCl₂ formed will be equal to the no. of moles of PbO i.e. 0.029.

17. (c):

` '				
Element	%	Atomic mass	mole ratio	simple ratio
С	38.71	12	$\frac{38.71}{12} = 3.22$	$\frac{3.22}{3.22} = 1$
Н	9.67	1	$\frac{9.67}{1} = 9.67$	$\frac{9.67}{3.22} = 3$
0	51.62	16	$\frac{51.62}{16} = 3.22$	$\frac{3.22}{3.22} = 1$

Hence empirical formula of the compound would be CH₃O.

18. (d) : Average isotopic mass of X

$$=\frac{200\times90+199\times8+202\times2}{90+8+2}$$

$$= \frac{18000 + 1592 + 404}{100} = 199.96 \text{ a.m.u.} \approx 200 \text{ a.m.u.}$$

19. (a) : At STP, 22.4 L $H_2 = 6.023 \times 10^{23}$ molecules

$$15 L H_2 = \frac{6.023 \times 10^{23} \times 15}{22.4} = 4.033 \times 10^{23}$$

$$5 L N_2 = \frac{6.023 \times 10^{23} \times 5}{22.4} = 1.344 \times 10^{23}$$

$$2 \text{ g H}_2 = 6.023 \times 10^{23}$$

0.5 g H₂ =
$$\frac{6.023 \times 10^{23} \times 0.5}{2}$$
 = 1.505×10²³
32 g O₂ = 6.023 × 10²³

10 g of
$$O_2 = \frac{6.023 \times 10^{23} \times 10}{32} = 1.882 \times 10^{23}$$

20. (b): 1 mole of any element contain 6.023×10^{23} number of molecules.

1 g mole of $O_2 = 32$ g O_3

 \Rightarrow 16 g of $O_2 = 0.5$ g mole O_2 1 g mole of $N_2 = 28 \text{ g N}_2$

 \Rightarrow 7 g N₂ = 0.25 g mole N₂ 1 g mole of $H_2 = 2 g H_2$

 $2 g H_2 = 1.0 g mole H_2$

 $\begin{array}{c}
1 \text{ g mole NO}_2 = 14 + 16 \times 2 = 46 \\
\Rightarrow 16 \text{ g of NO}_2 = 0.35 \text{ mole NO}_2
\end{array}$

 $2 g H_2 (1 g mole H_2)$ contain maximum molecules.

21. (a): In peroxidase anhydrous enzyme 0.5% Se is present means, 0.5 g Se is present in 100 g of enzyme. In a molecule of enzyme one Se atom must be present. Hence 78.4 g Se will be present in

$$\frac{100}{0.5} \times 78.4 = 1.568 \times 10^4$$

22. (c) : Density = 1.17 g/cc.

⇒ 1 cc. solution contains 1.17 g of HCl

:. Molarity =
$$\frac{1.17 \times 1000}{36.5 \times 1}$$
 = 32.05

23. (a): Specific volume (vol. of 1 g) cylindrical virus particle = 6.02×10^{-2} cc/g

Radius of virus, $r = 7 \text{ Å} = 7 \times 10^{-8} \text{ cm}$ Volume of virus = $\pi r^2 l$

$$= \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8} = 154 \times 10^{-23} \text{ cc}$$

wt. of one virus particle = $\frac{\text{Volume}}{\text{Specific volume}}$

$$\Rightarrow \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} g$$

Molecular wt. of virus = wt. of N_A particle

$$= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{-23} \text{ g/mol.}$$

= 15400 g/mol = 15.4 kg/mol

24. (c):
$$K_3[Cu(CN)_2] = 3(+1) + x + 2(-1) = 0$$

 $\Rightarrow x = -1$

As the oxidation no. of 'Cu' is -1 (-ve), so this complex is unstable and is not formed.

25. (b):
$$BaCO_3 \rightarrow BaO + CO_2$$

$$197 \cdot 34~g \rightarrow~22 \cdot 4~L$$
 at N.T.P.

$$9.85 \,\mathrm{g} \to \frac{22.4}{197.34} \times 9.85 = 1.118 \,\mathrm{L}$$

 \Rightarrow 9.85 g BaCO₃ will produce 1.118 L CO₂ at N.T.P. on the complete decomposition.

26. (b):
$$\ln A_3(BC_4)_2$$
, (+2) × 3 + 2[+5 + 4(-2)]
 \Rightarrow + 6 + 10 - 16 = 0

Hence in the compound $A_3(BC_4)_2$, the oxidation no. of 'A', 'B' and 'C' are +2, +5 and -2 respectively.

27. (d) : No. of molecules in
$$4.25 \text{ g NH}_3$$

$$=\frac{4.25}{17}\times6.023\times10^{23}=2.5\times6.023\times10^{22}$$

Number of atoms in 4.25 g NH₃

$$= 4 \times 2.5 \times 6.023 \times 10^{22} = 6.023 \times 10^{23}$$

28. (d): Zeros placed left to the number are never significant, therefore the no. of significant figures for the numbers.

161 cm = 0.161 cm and 0.0161 cm are same, i.e. 3

29. (a): Quantity of iron in one molecule

$$=\frac{67200}{100}\times0.334=224.45\ amu$$

No. of iron atoms in one molecule of haemoglobin $=\frac{224.45}{56}=4$

30. (a):
$$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$$

 $4 \text{ mole} + 5 \text{ mole} \rightarrow 4 \text{ mole} + 6 \text{ mole}$

$$\Rightarrow$$
 1 mole of NH₃ requires = $\frac{5}{4}$ = 1.25 mole of oxygen

while 1 mole of O_2 requires = $\frac{4}{5}$ = 0.8 mole of NH₃. As there is 1 mole of NH₃ and 1 mole of O₂, so all oxygen will be consumed.

31. (c):
$$Ne^{2+}(8) \Rightarrow 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$$

$$\text{Re}^+(3) \rightarrow 1s^22s^1$$

$$Be^{+}(3) \Rightarrow 1s^{2}2s^{1}$$

$$Cl^{-}(18) \Rightarrow 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$$

$$As^{+}(32) \Rightarrow 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p_{x}^{1}4p_{y}^{1}$$

Cl⁻ is not paramagnetic, as it has no unpaired electron.

32. (b): Weight of gas = 0.24 g, Volume of gas = 45 mL = 0.045 litre and density of $H_2 = 0.089$.

We know that weight of 45 mL of $H_2 =$

Density × Volume = $0.089 \times 0.045 = 4.005 \times 10^{-3}$ g Therefore vapour density

Weight of certain volume of substance

Weight of same volume of hydrogen

$$= \frac{0.24}{4.005 \times 10^{-3}} = 59.93$$

33. (c) : Zn +
$$H_2SO_4 \rightarrow ZnSO_4 + H_2$$
 (65 g) (22400 mL)

Since 65 g of zinc reacts to liberate 22400 mL of H₂ at STP, therefore amount of zinc needed to produce 224 mL of H2 at STP

$$= \frac{65}{22400} \times 224 = 0.65 \text{ g}$$
34. (b): Pressure = $\frac{\text{Force}}{\text{Area}}$

34. (b): Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

Therefore dimensions of pressure =

and dimensions of energy per unit volume
$$= \frac{Energy}{Volume} = \frac{ML^2T^{-2}}{L^3} = ML^{-1}T^{-2}$$

35. (a): Volume of oxygen in one litre of air

$$=\frac{21}{100}\times1000 = 210 \text{ mL}$$

Therefore no. of mol = $\frac{210}{22400}$ = 0.0093 mol

36. (c): Each nitrogen atom has 5 valence electrons, therefore total number of electrons in N₃ ion is 16. Since the molecular mass of N₃ is 42, therefore total number of electrons in 4.2 g of N₃ ion

$$=\frac{4.2}{42}\times16\times N_A = 1.6 N_A$$

37. (a):
$$5MH_2SO_4 = 10NH_2SO_4$$

$$N_1 V_1 = N_2 V_2 \Rightarrow 10 \times 1 = N_2 \times 10 \implies N_2 = 1$$
N

38. (b): Avogadro's No., $N_A = 6.02 \times 10^{23}$ molecules.

∴
$$6.02 \times 10^{24}$$
 CO molecules = 10 moles CO
= 10 g atoms of O = 5 g molecules of O₂

39. (a): Average atomic mass
$$= \frac{19 \times 10 + 81 \times 11}{100} = 10.81$$

40. (c): If 1L of one gas contains N molecules, 2 L of any gas under the same conditions will contain 2 N molecules.

41. (d):
$$Z_2O_3 + 3H_2 \rightarrow 2Z + 3H_2O$$

Valency of metal in $Z_2O_3 = 3$

 $0.1596 \text{ g of } Z_2O_3 \text{ react with 6 mg of H}_2.$

$$[1 \text{ mg} = 0.001 \text{ g} = 10^{-3} \text{g}]$$

:. 1 g of H₂ react with =
$$\frac{0.1596}{0.006}$$
 = 26.6 g of Z₂O₃

:. Eq. wt. of
$$Z_2O_3 = 26.6$$

Now, Eq. wt. of Z + Eq. wt. of O = Eq. wt. of Z + 8 = 26.6

$$\Rightarrow$$
 Eq. wt. of $Z = 26.6 - 8 = 18.6$

 \therefore At. wt. of $Z = 18.6 \times 3 = 55.8$

$$Eq. wt = \frac{Atomic wt.}{Valency of metal}$$

42. (a): Here, $C_p/C_V = 1.4$, which shows that the gas is diatomic.

22.4 L at NTP =
$$6.02 \times 10^{23}$$
 molecules

 \therefore 11.2 L at NTP = 3.01 × 10²³ molecules Since gas is diatomic.

$$\therefore$$
 11.2 L at NTP = 6.02 × 10²³ atom

43. (c):
$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$$

28 g 96 g

$$2.8 \text{ kg } \text{C}_2\text{H}_4 = \frac{96 \text{ g}}{28 \text{ g}} \times 2.8 \text{ kg}$$

$$= \frac{96}{28} \times 2.8 \times 10^3 g = 9.6 \times 10^3 g = 9.6 \text{ kg}$$

44. (a): 1 mol of
$$CO_2 = 44$$
 g of CO_2

$$\therefore \quad 4.4 \text{ g CO}_2 = 0.1 \text{ mol CO}_2 = 6 \times 10^{22} \text{ molecules}$$
[Since, 1 mole CO₂ = 6×10^{23} molecules]
$$= 2 \times 6 \times 10^{22} \text{ atoms of O} = 1.2 \times 10^{23} \text{ atoms of O}$$

45. (a):
$$1 \text{ mol CCl}_4 \text{ vapour} = 12 + 4 \times 35.5$$

$$\therefore \text{ Density of CCl}_4 \text{ vapour } = \frac{154}{22.4} \text{ g L}^{-1}$$
$$= 6.875 \text{ g L}^{-1}$$

46. (a):
$$Mg^{2+} + Na_2CO_3 \rightarrow MgCO_3 + 2Na^+$$

 $lg eq. \quad lg eq.$
 $lg eq. of Mg^{2+} = 12g of Mg^{2+} = 12000 mg$

Now, 1000 millieq. of $Na_2CO_3 = 12000 \text{ mg of Mg}^{2+}$

$$\therefore$$
 1 millieq. of Na₂CO₃ = 12 mg of Mg²⁺

47. (d): As we know,

22400 cc of N_2O contain 6.02×10^{23} molecules

$$\therefore$$
 1 cc of N₂O contain $\frac{6.02 \times 10^{23}}{22400}$ molecules

Since in N₂O molecule there are 3 atoms

$$\therefore 1 \text{ cc N}_2\text{O} = \frac{3 \times 6.02 \times 10^{23}}{22400} \text{ atoms}$$
$$= \frac{1.8 \times 10^{22}}{224} \text{ atoms}$$

No. of electrons in a molecule of $N_2O = 7 + 7 + 8 = 22$

Hence, no. of electrons =
$$\frac{6.02 \times 10^{23}}{22400} \times 22$$
 electrons = $\frac{1.32}{224} \times 10^{23}$ electrons

